
Week 10 - Wednesday



 What did we talk about last time?
 Maximum flow
 Minimum cuts







 As I was going to St. Ives
 I crossed the path of seven wives
 Every wife had seven sacks
 Every sack had seven cats
 Every cat had seven kittens
 Kittens, cats, sacks, wives
 How many were going to St. Ives?
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 Recall that a bipartite graph is one whose nodes can be 
divided into two disjoint sets X and Y

 Every edge has one end in set X and the other in set Y
 There are no edges from a node inside set X to another node in set X
 There are no edges from a node inside set Y to another in set Y

 Equivalently, a graph is bipartite if and only if it contains no 
odd cycles
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 Matching means pairing up nodes in set X with nodes in set Y
 A node can only be in one pair
 A perfect matching is when every node in set X and every 

node in set Y is matched
 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as 

many nodes are matched up as possible



 The goal of this class is to expose you to many algorithms
 Hopefully, an algorithm for one problem can be used for 

another problem, by adding a tweak
 It turns out that we can think of the bipartite matching 

problem as a version of the maximum flow problem
 We just need to update the graph a little
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 Take a bipartite graph G and turn it into a directed graph G'
 Create a source node s and a sink node t
 Connect directed edges from the source to all the nodes in set 

X
 Connect directed edges from all the nodes in set Y to the sink
 Change all the undirected edges from X to Y to directed edges 

from X to Y
 Set the capacities of all edges to 1



 We run the Ford-Fulkerson algorithm to find the maximum 
flow on our new graph

 Since all edges from X to Y have capacity 1, they will either 
have a flow of 1 or of 0

 If they have a flow of 1, they are in the matching
 If they have a flow of 0, they aren't
 The maximum flow value tells us how many nodes are 

matched



 Every node in X only has a single incoming edge from s
 Since it has a maximum of an incoming flow of 1, it has a 

maximum outgoing flow of 1 as well
 Each node in X can thus only be matched with one node in Y



 If you don't want to, you don't have to make the flow network
 You can apply the same idea directly to the bipartite graph
 To be parallel, an augmenting path will start in X and end in Y
 It will always start at an unmatched node in X and end at an 

unmatched node in Y
 Crossing an unmatched edge (one with 0 flow) will change it 

to a matched edge (one with 1 flow)
 Crossing a matched edge (one with 1 flow) is crossing it 

backwards, changing it to an unmatched edge (one with 0 
flow)



 To make the algorithm go faster, we can start with a maximal 
matching

 A maximal matching is not necessarily maximum, but you 
can't add edges to it directly without removing other edges

 In essence, arbitrarily match unmatched nodes until you can't 
anymore

 Then start the process of looking for augmenting paths



1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node 

in X and ends at an unmatched node in Y
3. If there is such a path, switch all the edges along the path 

from being in the matching to being out and vice versa
4. If there is another augmenting path, go back to Step 2
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 NP-completeness
 Polynomial-time reductions



 Finish Assignment 5
 Due Friday by midnight!

 Read section 8.1
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